位置:成果数据库 > 期刊 > 期刊详情页
钝体改进结构对先进旋涡燃烧室燃烧流动特性影响
  • ISSN号:1000-8055
  • 期刊名称:《航空动力学报》
  • 时间:0
  • 分类:V434.3[航空宇航科学与技术—航空宇航推进理论与工程] TM154.21[电气工程—电工理论与新技术]
  • 作者机构:[1]China Aviation Powerplant Research Institute, Aviation Industry Corporation of China, Zhuzhou 412002,China, [2]College of Power and Mechanical Engineering, Shanghai University of Electric Power, Shanghai 200090,China, [3]School of Aircraft Engineering, Nanchang Hangkong University, Nanchang 330063, China
  • 相关基金:Project supported by the National Natural Science Foun-dation of China(Grant Nos.51066006,51266013); the Aero-nautical Science Fund(Grant Nos.2013ZB56002,2013ZB56004)
中文摘要:

The cold flow characteristics are investigated to show the effect of the structural parameters of the flow guide vane on the trapped vortex combustor(TVC). The results show that the structural parameters have significant effects on the TVC. As a/ H increases, the total pressure loss, the wall shear stress at the bottom of the cavity and the turbulent intensity in the main combustion zone increase. b/ B does not have a significant effect on the cavity flow structure and the total pressure loss, and the wall shear stress at the bottom of the cavity increases as b/ B increases. There is no significant increase of the turbulent intensity with the increase of b/ B. The increase of c/ L has little effect on the total pressure loss, and it is not conducive to a stable combustion. As c/ L increases, the wall shear stress at the bottom of the cavity decreases. When a/ H= 0.4, b/ B= 0.4, c/ L= 0.1, a desirable dual-vortex structure is formed with an acceptable pressure loss to achieve a stable combustion. Moreover, to ascertain that the flame is stable for different values of Vm a with the optimal structural parameters, the effect of Vm a on the flow field is discussed. Results suggest that the dual-vortex structure has no relationship with the increase of Vm a. Furthermore, an unsteady simulation is conducted to show the generation and the development of the dual-vortex.

英文摘要:

The cold flow characteristics are investigated to show the effect of the structural parameters of the flow guide vane on the trapped vortex combustor(TVC). The results show that the structural parameters have significant effects on the TVC. As a/ H increases, the total pressure loss, the wall shear stress at the bottom of the cavity and the turbulent intensity in the main combustion zone increase. b/ B does not have a significant effect on the cavity flow structure and the total pressure loss, and the wall shear stress at the bottom of the cavity increases as b/ B increases. There is no significant increase of the turbulent intensity with the increase of b/ B. The increase of c/ L has little effect on the total pressure loss, and it is not conducive to a stable combustion. As c/ L increases, the wall shear stress at the bottom of the cavity decreases. When a/ H= 0.4, b/ B= 0.4, c/ L= 0.1, a desirable dual-vortex structure is formed with an acceptable pressure loss to achieve a stable combustion. Moreover, to ascertain that the flame is stable for different values of Vm a with the optimal structural parameters, the effect of Vm a on the flow field is discussed. Results suggest that the dual-vortex structure has no relationship with the increase of Vm a. Furthermore, an unsteady simulation is conducted to show the generation and the development of the dual-vortex.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《航空动力学报》
  • 北大核心期刊(2011版)
  • 主管单位:中国科协
  • 主办单位:中国航空学会
  • 主编:陶智
  • 地址:北京市海淀区学院路37号
  • 邮编:100191
  • 邮箱:JAP@buaa.edu.cn
  • 电话:010-82317410
  • 国际标准刊号:ISSN:1000-8055
  • 国内统一刊号:ISSN:11-2297/V
  • 邮发代号:
  • 获奖情况:
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国化学文摘(网络版),波兰哥白尼索引,荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:13986