位置:成果数据库 > 期刊 > 期刊详情页
面向拥挤环境的移动机器人改进粒子滤波定位
  • ISSN号:1002-0446
  • 期刊名称:机器人
  • 时间:2012
  • 页码:596-603
  • 分类:TP24[自动化与计算机技术—控制科学与工程;自动化与计算机技术—检测技术与自动化装置]
  • 作者机构:[1]上海交通大学自动化系,上海200240, [2]系统控制与信息处理教育部重点实验室,上海200240, [3]哈尔滨工业大学机器人技术与系统国家重点实验室,黑龙江哈尔滨150001
  • 相关基金:国家863计划资助项目(2012AA041403);国家自然科学基金资助项目(60934006,61175088);教育部博士点基金资助项目(20100073110018);机器人技术与系统国家重点实验室开放基金资助项目(SKLRS2011ZD01).
  • 相关项目:复杂环境下智能轮椅的感知与控制
中文摘要:

在动态变化的拥挤环境中,移动机器人的传统地图匹配定位算法会由于观测信息的剧烈变化,导致定位性能明显下降甚至完全失效.对此本文提出了一种基于可定位性估计的改进粒子滤波定位算法.本算法一方面借助观测模型的可定位性矩阵估计激光测距仪观测数据的可信度,另一方面通过预测模型的协方差矩阵估计里程计数据的可信度,进而根据这两个指标调节观测信息对预测位姿的修正值.在多种典型走廊环境中,与经典粒子滤波定位算法做了对比实验,结果表明了本文算法对提高复杂环境下移动机器人定位性能的有效性.

英文摘要:

In dynamic crowded environments, the localization performance of traditional map-matching algorithms for mobile robot will be significantly decreased, even the localization will completely fail, because of severe changes of the observation information. In this paper, an improved particle filter localization algorithm is proposed based on localizability estimation. On one hand, this algorithm estimates the belief of laser range finder observations using the localizability matrix of observation model. On the other hand, it estimates the belief of the odometer data using the covariance matrix of prediction model. Then based on these two indicators, the predicted robot pose is modified according to the observation information. Experiments of localization and navigation under different typical corridor environments are designed to compare the proposed algorithm with classical particle filter algorithms. The result demonstrates the validity of the proposed localization algorithm under comolex environments.

同期刊论文项目
期刊论文 79 会议论文 58 获奖 10 专利 5 著作 2
期刊论文 18 会议论文 12
同项目期刊论文
期刊信息
  • 《机器人》
  • 中国科技核心期刊
  • 主管单位:中国科学院
  • 主办单位:中国自动化学会 中国科学院沈阳自动化研究所
  • 主编:王越超
  • 地址:沈阳市南塔街114号
  • 邮编:110016
  • 邮箱:jqr@sia.ac.cn
  • 电话:024-23970050
  • 国际标准刊号:ISSN:1002-0446
  • 国内统一刊号:ISSN:21-1137/TP
  • 邮发代号:
  • 获奖情况:
  • 中文核心期刊(2000年)
  • 国内外数据库收录:
  • 荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:11997