针对冷能回收再利用问题,提出了一种结合LNG和燃煤废气发电与天然气再液化的冷能利用系统并对系统进行了改进。对原系统和系统改进部分进行了热力学计算,详细分析了蒸发压力、蒸发温度对系统热力性能的影响,分析了天然气液化率对系统净输出功的影响,确定了发电循环的最佳蒸发压力、蒸发温度及天然气液化率的范围。结果表明:以回收1000 kg·h^-1的LNG冷量计算,发电系统最大净输出功为69.6 kW·h,系统冷回收效率为41.43%;液化系统LNG液化率最大值为24%;系统改进后,发电系统净输出功和冷回收效率提高了17.85%,液化系统LNG液化率提高至28%。为日后LNG气化供气过程中的冷能利用提供一种新的思路。
Aiming at the problem of cold energy recycling, a cold energy utilization system combined with LNG and coal-burning waste gas power generation and natural gas re-liquefaction was proposed and the system was improved. The thermodynamic calculation of the original system and part of the improved system was made. The effects of evaporation pressure and temperature on the thermal performance of the system was analyzed in detail, the influences of natural gas liquefaction rate on the net power output of the system was analyzed. The optimal scope of power cycle optimal evaporating pressure, evaporation temperature and gas liquefaction rate was determined. The results showed that: calculating as the LNG cold energy recovery is 1000 kg·h^-1, the maximum net output of power generation system was 69.6 kW·h, cold energy recovery efficiency was 41.43%; the maximum value of liquefaction system LNG liquefaction rate was 24%; as the system was improved, the net output power and cold energy recovery efficiency of the power generation system increased by 17.85%, the liquefaction rate of LNG liquefaction system was improved to 28%. It provides a new way of thinking for the cold energy utilization in the process of LNG gasification.