根据Lyapunov函数稳定性差分方法,通过构造适当的对角占优矩阵,并运用线性矩阵不等式(LMI)技术完成稳定性分析中非线性项的线性化,给出了基于LMI的不确定多时滞离散非线性饱和系统的鲁棒稳定性的充分条件,该判定条件含有较少的变量.最后通过数值案例验证了该方法的正确性和有效性.
According to Lyapunov stability function difference method ,by constructing diagonally dominant matrix ,and using the linear matrix inequality (LMI) technique to complete the linearization of the nonlin-ear terms of the stability analysis ,this paper proposes LMI-based sufficient conditions for robust stability of uncertain discrete nonlinear system with multiple time delays employing saturation nonlinearities ,the criteria contained fewer variables .Finally ,numerical examples verify the correctness and effectiveness of the theorem .