利用Leggett-Williams不动点定理研究了四阶奇异微分方程边值问题{(p(t)u″(t))′=g(t)f(t,u(t),u′(t),u″(t)),0〈t〈1,u(0)=u(1)=0,au″(0)-b lim t→0+ p(t)u″(t)=0,cu″(1)-d lim t→1- p(t)u″(t)=0三个正解的存在性,所得结果推广了相关的已知结果。
In this paper, by using the Leggett-Williams fixed point theorem, following fourth-order sin-gular boundary value problem {(p(t)u″(t))′=g(t)f(t,u(t),u′(t),u″(t)),0〈t〈1,u(0)=u(1)=0,au″(0)-b lim t→0+ p(t)u″(t)=0,cu″(1)-d lim t→1- p(t)u″(t)=0 A new result on the existence of at least triple positive solutions for this class of differential equations is derived.