位置:成果数据库 > 期刊 > 期刊详情页
基于神经网络的马尾松叶绿素含量高光谱估算模型
  • ISSN号:1001-9332
  • 期刊名称:《应用生态学报》
  • 时间:0
  • 分类:S511[农业科学—作物学]
  • 作者机构:南京林业大学林学院,南京210037
  • 相关基金:本文由国家自然科学基金项目(31470579,31100414)和江苏省高校优势学科建设工程项目资助
作者: 刘文雅, 潘洁
中文摘要:

分析不同生长期的马尾松冠层反射光谱特征与相应叶绿素含量的相关关系.利用36个红边参数逐一筛选,最终确定7个与叶绿素含量相关性较高的红边参数作为光谱特征参数,分别应用逐步分析法与BP神经网络构建叶绿素含量的高光谱估算模型;同样,筛选出4个植被指数作为光谱特征参数,同时,将对原始光谱进行主成分分析降维后的前4个主成分作为BP神经网络的输入变量,分别应用逐步分析法与BP神经网络构建叶绿素含量的高光谱估算模型.结果表明:将红边参数作为输入变量建立的逐步回归模型和BP神经网络模型的决定系数(R^2)分别为0.5205、0.7253,均方根误差(RMSE)分别为0.1004、0.0848,相对误差分别为6.3%、5.7%.将植被指数作为输入变量建立的逐步回归模型和BP神经网络模型的R^2分别为0.5392、0.7064,RMSE分别为0.0978、0.0871,相对误差分别为6.2%、6.0%.基于主成分分析的BP神经网络模型的预测效果最好,R^2为0.7475,RMSE为0.0540,相对误差为4.8%.

英文摘要:

The relationships between the leaf chlorophyll content (LCC) of Pinus massoniana at different growth stages and their chlorophyll content were analyzed. 7 of 36 red edge-based parameters were finally selected as the typical spectral response parameters which held the most significant statistical relationship with LCC, and then the hyperspectral assessment model for retrieving the LCC was built based on stepwise regression analysis method and B-P neural network, respectively. In the same way, four different vegetation indices (VIs) were selected as typical spectral parameters, in the meantime, the first four components of the principal component analysis (PCA) trans- formed from original spectral measurements were inputted into the B-P neural network, and then the hyperspectral assessment model for retrieving the LCC was built based on stepwise regression analysis method and B-P neural network, respectively. The results showed that R2 of the red edge-based stepwise regression model and the red edge-based B-P neural network model were 0. 5205 and 0.7253, RMSE were 0.1004 and 0.0848, and relative errors were 6.3% and 5.7%, respectively. R2 of the VIs-based stepwise regression model and the VIs-based B-P neural network model were 0.5392 and 0.7064, RMSE were 0.0978 and 0.0871, and relative errors were at 6.2% and 6.0%, respectively. The prediction effect of PCA-based B-P neural network model was the best, R2 was 0.7475, RMSE was 0.0540, and the relative error was 4.8%.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《应用生态学报》
  • 北大核心期刊(2011版)
  • 主管单位:中国科学院
  • 主办单位:中国生态学学会 中国科学院沈阳应用生态研究所
  • 主编:沈善敏
  • 地址:沈阳市文化路72号
  • 邮编:110016
  • 邮箱:
  • 电话:024-83970393
  • 国际标准刊号:ISSN:1001-9332
  • 国内统一刊号:ISSN:21-1253/Q
  • 邮发代号:8-98
  • 获奖情况:
  • 中国自然科学核心期刊,中国科学院优秀期刊,中国期刊方阵“双效”期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国化学文摘(网络版),荷兰地学数据库,荷兰文摘与引文数据库,美国生物医学检索系统,美国生物科学数据库,英国动物学记录,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版)
  • 被引量:98742