位置:成果数据库 > 期刊 > 期刊详情页
结合概率型神经网络(PNN)和学习矢量量化(LVQ)算法的文本分类方法
  • ISSN号:1003-3254
  • 期刊名称:计算机系统应用
  • 时间:2012.10.15
  • 页码:81-85
  • 分类:TP18[自动化与计算机技术—控制科学与工程;自动化与计算机技术—控制理论与控制工程]
  • 作者机构:[1]昆明理工大学信息工程与自动化学院,昆明650051
  • 相关基金:基金项目:国家自然科学基金(61175068)
  • 相关项目:专家检索资源获取与学习排序方法研究
作者: 李敏|余正涛|
中文摘要:

针对文本自动分类问题,提出一种基于概率型神经网络(PNN)和学习矢量量化(LVQ)相结合的文本分类算法,该方法借助TFIDF方法提取文本特征及特征值,形成文本分类特征向量,利用概率型神经网络构建分类模型,并利用LVQ学习算法对神经网络模型竞争层网络进行学习,使相应模式向量相互靠拢,远离其他模式,从而实现文本分类.实验结果表明,提出的该方法在文本分类中表现了很好的效果,不仅具有很好的分类准确率,还表现出很好的学习效率.

英文摘要:

Aiming at the problem of text classification, one text classification method based on the probabilistic neural network ( PNN ) and learning vector quantization ( LVQ ) is proposed. The text features and feature values are extracted by use of TFIDF method, and text categorization feature vector are formed. In addition, classification model based on prohabilistic neural network can be constructed and the learning of competitive layer network is completed by using LVQ algorithms, so the corresponding pattern vector to move closer to each other, away from the other modes, thereby realizing text classification. The experimental results show that the method in the text classification performance with very good results, and not only has good classification accuracy, but also shows a good learning efficiency.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机系统应用》
  • 中国科技核心期刊
  • 主管单位:中国科学院
  • 主办单位:中国科学院软件研究所
  • 主编:苏振泽
  • 地址:北京8718信箱
  • 邮编:100190
  • 邮箱:csa@iscas.ac.cn
  • 电话:010-62661041
  • 国际标准刊号:ISSN:1003-3254
  • 国内统一刊号:ISSN:11-2854/TP
  • 邮发代号:82-558
  • 获奖情况:
  • 国内外数据库收录:
  • 波兰哥白尼索引,美国剑桥科学文摘,中国中国科技核心期刊,中国北大核心期刊(2000版)
  • 被引量:15201