本文证明了和如下耦合Schrodinger-KdV方程相联系的初值问题的足够光滑的解(u,v)=(u(x,t),v(x,t)), {i tu+ x^2u=auv+γ|u|^u, tv+ x^v+ xv^2=β x(|u|^2), u(x,0)=u0(x),v(x,0)=v0(x),x,t∈R 如果在一个非退化的时间区间内具有紧支集,那么u≡0,v≡0.
We prove that,if a sufficiently smooth solution(u,v)=(u(x,t),v(x,t)) to the initial value problem associated with the coupled Schrodinger-KdV equation {i tu+ x^2u=auv+γ|u|^u, tv+ x^v+ xv^2=β x(|u|^2), u(x,0)=u0(x),v(x,0)=v0(x),x,t∈R is supported compactly in a nontrivial time interval then it vanishes identically.