为了使公交车辆的发车间隔得到优化,根据客流量的变化,建立了以乘客和公交企业运营费用最小为目标的公交车辆发车间隔优化模型,并采用一种多目标演化算法(MOPEA)来求解模型.该算法通过粒子系统从非平衡状态达到平衡状态的理论来定义Rank函数,从而使得所有个体在每次迭代过程中均能参与杂交、变异等演化操作,最终求得发车间隔的全局最优解,从而避免传统演化算法中出现的陷入问题的局部解的现象.同时,保留了目标函数的多样性,使相向的多目标优化问题得到了一个"折中"的最优解,即Pareto最优解.最后通过实例验证了该算法比传统演化算法更具优越性.