证明了有n个顶点的图构形中所含的m个顶点的团(clique)对应的超平面的交是模元。然后利用Stanley定理给出了此类图构形的Poincaré多项式的一个因式分解。并举例说明图G的一个弦子图所决定的m个顶点的超平面的交不一定是L(A(G))的模元。
The intersection of hyperplanes corresponding to the edges of a clique in the intersection lattice of a graphic arrangement is shown to be modular. As a corollary of a theorem due to Stanley, a factorization of the Poincaré polynomial over integers of the graphic arrangement is given. Furthermore, it is shown that if X is the intersection of hyperplanes corresponding to the edges of a chordal graph, then X is not modular in general.