结合谱聚类算法中的自适应尺度和最大最小距离算法的思想,提出了一种基于稀疏度和距离的初始类中心选择算法,并将提出的初始类中心选择算法应用于k-means和Fuzzy k-means算法的初始类中心选择,在UCI和真实数据上的实验结果表明提出的算法是有效和可行的。
Combining a local scale parameter in spectral clustering algorithm with the max-min distance algorithm,we propose an initial cluster centers selecting algorithm based on sparsity and distance simultaneously.We applied the proposed algorithm to the selection of initial cluster centers of the k-means and the Fuzzy k-means clustering algorithms.The experimental results on both UCI datasets and real datasets show that the proposed algorithm is effective and feasible in real applications.