位置:成果数据库 > 期刊 > 期刊详情页
跨项目缺陷预测中训练数据选择方法
  • ISSN号:1001-9081
  • 期刊名称:《计算机应用》
  • 时间:0
  • 分类:TP310[自动化与计算机技术—计算机软件与理论;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]湖北大学计算机与信息工程学院,武汉430062, [2]湖北省教育信息化工程技术研究中心(湖北大学),武汉430062
  • 相关基金:国家973计划项目(2014CB340401);国家自然科学基金资助项目(61273216,61272111,61202048,61202032);湖北省知识创新专项项目(2016CFB309);武汉市青年科技晨光计划项目(2014070404010232).
中文摘要:

跨项目缺陷预测(CPDP)利用来自其他项目的缺陷数据预测目标项目的缺陷情况,为解决以往缺陷预测方法面临的训练数据受限问题提供了一个新的视角。训练数据的质量将直接影响跨项目缺陷预测模型的性能,因此,需尽可能选择与目标项目更相似的数据用于模型的训练。利用PROMISE提供的34个公开数据集,从训练数据选择方面,分析了四种典型的相似性度量方法对跨项目预测结果的影响以及各种方法之间的差异。研究结果表明:使用不同的相似性度量方法选出的训练数据质量不同,其中余弦相似性与相关系数两种方法效果更好,且最大改进比例达到6.7%;同时,根据目标项目的缺陷率,发现余弦相似性更适合于缺陷率高于0.25的项目。

英文摘要:

Cross-Project Defect Prediction ( CPDP), which uses data from other projects to predict defects in the target project, provides a new perspective to resolve the shortcoming of limited training data encountered in traditional defect prediction. The data more similar to target project should be given priority in the context, because the quality of train cross- project data will directly affect the performance of cross-project defect prediction. In this paper, to analyze the impact of different similarity measures on the selection of training data for cross-project defect prediction, experiments were performed on 34 datasets from the PROMISE repository. The results show that the quality of training data selected by different similarity measure methods is various, and cosine similarity and correlation coefficient can achieve better performance as a whole. The greatest improvement rate is up to 6.7%. According to defect rate of target project, cosine similarity is seem to be more suitable when the defect rate is more than 0.25.

同期刊论文项目
期刊论文 22 会议论文 1 获奖 1
同项目期刊论文
期刊信息
  • 《计算机应用》
  • 北大核心期刊(2011版)
  • 主管单位:四川省科学技术协会
  • 主办单位:四川省计算机学会中国科学院成都分院
  • 主编:张景中
  • 地址:成都市人民南路四段九号科分院计算所
  • 邮编:610041
  • 邮箱:xzh@joca.cn
  • 电话:028-85224283
  • 国际标准刊号:ISSN:1001-9081
  • 国内统一刊号:ISSN:51-1307/TP
  • 邮发代号:62-110
  • 获奖情况:
  • 全国优秀科技期刊一等奖,国家期刊奖提名奖,中国期刊方阵双奖期刊,中文核心期刊,中国科技核心期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,波兰哥白尼索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:53679