位置:成果数据库 > 期刊 > 期刊详情页
支持向量机在中长期径流预报中的应用
  • ISSN号:0559-9350
  • 期刊名称:《水利学报》
  • 时间:0
  • 分类:P338[天文地球—水文科学;水利工程—水文学及水资源;天文地球—地球物理学]
  • 作者机构:[1]大连理工大学土木水利学院,辽宁大连116024
  • 相关基金:国家自然科学基金资助项目(50479055)
中文摘要:

本文探索了支持向量机在中长期径流预报中的应用。在支持向量机建模过程中引入了径向基核函数,简化了非线性问题的求解过程,并应用SCE-UA算法辨识支持向量机的参数。在SCE-UA搜索过程中进行了指数变换,以快速准确的找到最优参数。与人工神经网络模型预报结果比较显示,该模型能提高径流中长期预报的精度。

英文摘要:

The support vector machine (SVM) method is applied to forecast long-term run-off. The radial basic core function is introduced in the establishment of the model describing the run-off hydrograph, and the SCE-UA algorithm is applied to identify the parameters of SVM. The exponential transformation is used to help quickly and precisely search the optimal parameters. The comparison of forecast result between proposed method and artificial neural network (ANN) method indicates that the new method possesses higher forecasting accuracy.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《水利学报》
  • 北大核心期刊(2011版)
  • 主管单位:中国科学技术协会
  • 主办单位:中国水利学会 中国大坝工程学会
  • 主编:程晓陶
  • 地址:北京市复兴路甲1号中国水科院A座1117室
  • 邮编:100038
  • 邮箱:slxb@iwhr.com
  • 电话:010-68786221
  • 国际标准刊号:ISSN:0559-9350
  • 国内统一刊号:ISSN:11-1882/TV
  • 邮发代号:2-183
  • 获奖情况:
  • 国内外数据库收录:
  • 荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:43715