构建能够表达语义特征的词语表示形式是自然语言处理的关键问题。该文首先介绍了基于分布假设和基于预测模型的词汇语义表示方法,并给出目前词表示方法的评价指标;进而介绍了基于词汇表示所蕴含的语义信息而产生的新应用;最后,对词汇语义表示研究的方法和目前面临的问题进行了分析和展望。
Constructing the words representation which could express the semantic features is the key problem of Natural Language Processing. In this paper, we first introduce the lexical semantic representation based on the distributional hypothesis and prediction model, and describe the evaluations methods of words representation. Then we review the new applications based on the semantic information of words representation. Finally, we discuss the development directions and exiting problems of lexical semantic representation.