位置:成果数据库 > 期刊 > 期刊详情页
基于混沌RBF神经网络的汽油机进气流量预测研究
  • ISSN号:1002-8331
  • 期刊名称:计算机工程与应用
  • 时间:0
  • 页码:-
  • 分类:TP39[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1] 长沙理工大学 汽车与机械工程学院,长沙 410076, [2]宜春学院 物理科学与工程技术学院,江西 宜春 336000
  • 相关基金:高等学校博士学科点专项科研基金(No.20104316110002);国家自然科学基金(No.51176014).
  • 相关项目:汽油机加速瞬态工况燃烧规律及控制方法研究
作者: 李岳林|
中文摘要:

针对汽油机进气流量的多维非线性特性,提出了一种混沌径向基(RBF)神经网络的汽油机进气流量预测模型。证明了汽油机进气流量时间序列具有混沌特性,对采集的原始数据进行相空间重构,利用RBF神经网络对重构后的数据进行训练和预测,并利用混沌算法确定输出层连接权值和隐含层高斯函数径向基中心,使其达到全局最优,加快了RBF神经网络的收敛速度。仿真结果表明,与空气进气流量平均值模型、RBF神经网络预测模型比较,该模型具有更高的预测精度,为精确及时测试汽油机进气流量提供了一种全新的软件测量方法。

英文摘要:

A soft predictive model based on Chaos-RBF neural network is proposed for the intake air flow of gasoline engine as its multidimensional nonlinear characteristics. The engine air intake flow time series with chaotic characteristics have been proved;the phase space of the original data has also been reconstructed before using RBF neural network to train and predict. And then, the result has been compared with the air inlet flow average model and RBF neural network forecasting model. Chaos algorithm is used to determine and optimal the implied Gaussian radial basis function center and the out put layer connection weights, in order to accelerate the convergence rate of RBF neural network. The simulation results show that this model is a new method to measure the intake air flow of the engine with more accuracy and timeless, which is superior to the intake air flow average model and RBF neural network prediction model.

同期刊论文项目
期刊论文 29 会议论文 12 专利 2
同项目期刊论文
期刊信息
  • 《计算机工程与应用》
  • 北大核心期刊(2014版)
  • 主管单位:中国电子科技集团公司
  • 主办单位:华北计算技术研究所
  • 主编:怀进鹏
  • 地址:北京市海淀区北四环中路211号北京619信箱26分箱
  • 邮编:100083
  • 邮箱:ceaj@vip.163.com
  • 电话:
  • 国际标准刊号:ISSN:1002-8331
  • 国内统一刊号:ISSN:11-2127/TP
  • 邮发代号:82-605
  • 获奖情况:
  • 1. 2012年首批获得中国学术文献评价中心发布的 “...,2. 2001年获得新闻出版署“中国期刊方阵双效期刊”,3. 2008年首批入选国家科技部“中国精品科技期刊...,4.2003年-2011年连续获得工业和信息化部期刊最高...
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,波兰哥白尼索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:97887