在(α-1)^2+(p-1)^2>0,且^∞∑(s=0)s^(m-1)qs<∞的条件下证明了奇数阶非线性中立型时滞差分方程△^m(xn-px(n-r)^α)+qnx(n-σ)^β=0,n≥n0.存在有界正解,所得的结果推广了已有的结果.其中τ>0和σ≥0是整数,α和β分别是两个正奇数之比,p∈(-∞,∞),{qn}是非负实数列.
It is shown that the odd-orderdelay difference equations with nonlinear neutral term △^m(xn-px(n-r)^α)+qnx(n-σ)^β=0,n≥n0, has positive solution under the conditions that (α-1)^2+(p-1)^2〉0 and ^∞∑(s=n0)s^(m-1)qs〈∞, which generalize the exist results in the literature.