研究了耦合转子中的纠缠增长及其与经典轨道之间的对应关系.通过量子演化模拟和经典轨道的功率谱分析,发现了纠缠增长随着经典轨道的变化而改变,并且这种对应关系和经典轨道的功率谱密切相关.经典功率谱越复杂,纠缠增长越快.以经典功率谱为基础,通过引入一个新的物理量———经典频率熵,用来标度经典轨道运动的稳定性.计算结果表明,在量子体系的最大纠缠和经典体系的经典频率熵之间存在很好的对应关系.
This paper is devoted to analyzing the connections between entanglement dynamics and classical trajectories with a model of coupled rotor. In the numerical simulation of quantum evolution and the frequency spectrum analysis of classical orbit, we find that entanglement production depends on classical orbit and such phenomenon is closely related to the power spectra of classical trajectories. Classical power spectrum with a more complicated structure corresponds to faster entanglement. With the classical power spectrum, we introduce a new quantity, i. e. , the frequency entropy, to measure the stability of classical orbit. The results show that there is good correspondence between the classical frequency entropies and the maximum yon Neumann entropies.