一个夸张 Lindstedt Poincar é方法被介绍决定一种非线性的振荡器,人诊所分叉参数的批评价值能在是坚定的人诊所解决方案。概括 Li é nard 振荡器详细被学习,并且现在的方法的预言与 Runge Kutta 方法的那些相比说明它的精确性。
A hyperbolic Lindstedt-Poincare method is presented to determine the homoclinic solutions of a kind of nonlinear oscillators, in which critical value of the homoclinic bifurcation parameter can be determined. The generalized Lienard oscillator is studied in detail, and the present method's predictions are compared with those of Runge-Kutta method to illustrate its accuracy.