讨论了B(H)上保交换零积的可加映射,其中B(H)是由Hilbert空间H上的有界线性算子全体组成的Banach代数。首先给出了在有限雏情形下,若φ是保交换零积的可加满射,使得φ(I)=I,并且对每个一秩幂等算子P∈Mn都有φ(Fφ)∪→Fφ(P),则φ是一个自同构或反自同构。进一步给出了无限维情形下,若φ是保交换零积可加满射,则φ是非零数乘一个环同构或一个环反同构。
It is obtained that additive commutative zero-product preserving maps on the algebra B(H) of all bounded linear operators, acting on the real or the complex Hilbert space H. If H is finite dimensional and φ is a surjective commutative zero-product preserving additive maps on B(H) such that φ{I}=I and φ(Fφ)∪→Fφ(P) for all rank one idempotent operators, then φ is an automorphism or an anti-automorphism. If H is infinite dimensional and φ is a surjective commutative zero-product preserving additive maps on B (H), It is obtained that φ is a nonzero scalar multiple of a ring isomorphism or a ring anti-isomorphism.