本文通过Homfly多项式的性质研究了环链的Alexander多项式的微分性质,给出一阶Alexander多项式的刻画,研究了纽结的Homfly多项式的整除性质,证明了纽结的Homfly多项式的K阶偏导数在x=1,y=-1,z=0时能被k!整除.
In this paper,we study the derivative properties of link Alexander polynomial by using the properties of the Homfly polynomial of links.Give characterization of 1th Alexander polynomial.We discuss the divisible properties of knot Homfly polynomial and prove that the K th partial derivative of the Homfly polynomial is divided by k! when x=1,y=-1,z=0.