用乳腺癌转移基因表达数据的熵信息确定基因权重,建立以误差最小为目标函数的整数非线性规划模型推测基因之间的调控关系,并通过相关系数模型筛选调控基因。利用软件LING08.0和MATLAB7.0编程求解,得到27个乳腺癌转移相关基因的调控网络,其中25对基因存在调控关系,有11对存在相互促进的双向调控作用。整数非线性规划模型能较好地刻划乳腺癌转移相关基因调控关系,可用于更复杂的基因调控网络的研究。
The authors utilized the entropy information from genetic data of breast cancer metastasis to get the weights of all the genes, and set up an integer nonlinear programing (INLP) model in which minimum error is regarded as objective function to search for the regulary relation in the genes, and then sieved regulary genes by coefficient correlation model. Using the programs of LINGO8.0 and MATLAB7.0, we got a genetic regulary network of the 27 genes related to breast cancer metastasis, where there are 25 pairs genes exiting regulary relation and 11 pairs genes being mutual promotion effect. INLP can describe the regulary relation of genes related to breast cancer metastasis, and can be used to study more complicated genetic regulary network.