位置:成果数据库 > 期刊 > 期刊详情页
一种基于中心文档的KNN中文文本分类算法
  • ISSN号:1002-8331
  • 期刊名称:《计算机工程与应用》
  • 时间:0
  • 分类:TP301.6[自动化与计算机技术—计算机系统结构;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]合肥工业大学计算机与信息学院,合肥230009
  • 相关基金:国家自然科学基金(No.60705015); 安徽省自然科学基金(No.070412064); 合肥工业大学科学研究发展基金项目(No.070504F)
中文摘要:

在浩瀚的数据资源中,为了实现对特定主题的搜索或提取,文本自动分类技术已经成为目前研究的热点。KNN是一种重要的文本自动分类方法,KNN能够处理大规模数据,且具有较高的稳定性,但面临分类速度较慢的问题。以KNN方法为基础,引入特征项间的语义关系,并根据语义关系进行聚类生成中心文档,减少了KNN要搜索的文档数,提高了分类速度。仿真实验表明,该算法在不损失分类精度的情况下,显著提高了分类的速度。

英文摘要:

In order to search or extract information in a special category from large data sourcet,ext automatic categorization has become a hot subject of research.KNN is an important method of text automatic categorization,it can deal with large data sets with more stability,but it faces with the problem of slow speed.Based on KNN classification,the semantic relation of feature items is introduced,and clustering to build center documents under it.This method reduces the number of documents which KNN should search,and increases the speed of classification.Simulation results show that the proposed algorithm improves the speed in the case of traditional classification precision.

同期刊论文项目
期刊论文 45 会议论文 4
同项目期刊论文
期刊信息
  • 《计算机工程与应用》
  • 北大核心期刊(2014版)
  • 主管单位:中国电子科技集团公司
  • 主办单位:华北计算技术研究所
  • 主编:怀进鹏
  • 地址:北京市海淀区北四环中路211号北京619信箱26分箱
  • 邮编:100083
  • 邮箱:ceaj@vip.163.com
  • 电话:
  • 国际标准刊号:ISSN:1002-8331
  • 国内统一刊号:ISSN:11-2127/TP
  • 邮发代号:82-605
  • 获奖情况:
  • 1. 2012年首批获得中国学术文献评价中心发布的 “...,2. 2001年获得新闻出版署“中国期刊方阵双效期刊”,3. 2008年首批入选国家科技部“中国精品科技期刊...,4.2003年-2011年连续获得工业和信息化部期刊最高...
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,波兰哥白尼索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:97887