该文研究了Lp(Ω,∑,μ;Lq(X,A,v))(2≤q〈p〈∞)单位球面之间的1-Lipschitz映射以及Lp(Ω,∑,μ;Lq(X,A,v))(1〈p〈q≤2)单位球面之间的反-1-Lipschitz映射,并证明了该映射可以延拓成为全空间上的实线性等距映射.
In this paper, we discuss the 1-Lipschitz mappings between the unit spheres in vector valued spaces Lp(Ω, ∑,μ;Lq(X,A,v)) (2 ≤ q 〈 p 〈 ∞) and anti-l-Lipschitz mappings between the unit spheres in vector valued spaces Lp(Ω, ∑,μ;Lq(X,A,v)) (1 〈 p 〈 q ≤ 2), and obtain that every such mapping can be extended to be a real linear isometry on the whole space Lp(Ω, ∑,μ;Lq(X,A,v)).