设a=│m(m^4-10m^2+5)│,b=5m^4-10m^2+1,c=m^2+1,其中m是正偶数.利用Bilu,Hanrot和Voutier关于本原素除子的深刻结果,证明了指数丢番图方程a^x+b^y=c^z。仅有正整数解(X,Y,Z)=(2,2,5).
Let a=│m(m^4-10m^2+5)│,b=5m^4-10m^2+1,c=m^2+1, where m is a positive even integer. We apply a new, deep result of Bilu, Hanrot & Voutier to show that the only positive integer solution of the exponential Diophantine equation a^x+b^y=c^z is (x,y,z) = (2,2,5).