位置:成果数据库 > 期刊 > 期刊详情页
一种基于杜鹃搜索算法的聚类分析方法
  • ISSN号:1000-7180
  • 期刊名称:《微电子学与计算机》
  • 时间:0
  • 分类:TP311.13[自动化与计算机技术—计算机软件与理论;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]湖北工业大学计算机学院
  • 相关基金:国家自然科学基金项目(41301371,61170135,61202287);地理信息工程国家重点实验室开放基金资助项目(SKLGIE 2013-M-3-3)
中文摘要:

受初始类中心的影响K-Means算法聚类结果容易陷入局部最优.基于遗传算法(Genetic Algorithm,GA)和粒子群优化算法(particle swarm optimization algorithm,PSO)的改进K-Means一定程度上改善了基本K-Means的性能,然而GA和PSO本身也容易陷入局部最优解.针对上述问题,提出一种新的聚类方法—基于杜鹃搜索算法(Cuckoo search algorithm,CS)的K-Means聚类方法,并将此算法与现有的基于GA的K-Means和基于PSO的KMeans进行比较.实验结果表明:该方法能有效地改善基本K-Means算法易陷入局部极值的缺点,而且全局寻优能力优于基于GA的K-Means和基于PSO的K-Means,是一种性能鲁棒的聚类方法.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《微电子学与计算机》
  • 中国科技核心期刊
  • 主管单位:中国航天科技集团公司
  • 主办单位:中国航天科技集团公司第九研究院第七七一研究所
  • 主编:李新龙
  • 地址:西安市雁塔区太白南路198号
  • 邮编:710065
  • 邮箱:mc771@163.com
  • 电话:029-82262687
  • 国际标准刊号:ISSN:1000-7180
  • 国内统一刊号:ISSN:61-1123/TN
  • 邮发代号:52-16
  • 获奖情况:
  • 航天优秀期刊,陕西省优秀期刊一等奖
  • 国内外数据库收录:
  • 荷兰文摘与引文数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:17909