根据截断的Painleve分析展开法及相容Riccati展开(CRE)法,研究了(2+1)维广义破裂孤子方程的非局域对称.利用非局域对称局域化的方法,得到了与Schwarzian变量相对应的对称群.同时,证明了这个方程是CRE可积的,并给出了它的孤立波与椭圆周期波之间的相互作用解.
According to the truncated Painlev′e expansion and consistent Riccati expansion(CRE)method,the nonlocal symmetry for the2+1-dimensional generalized breaking soliton equation is derived.Moreover,the symmetry group related to Schwarzian can be obtained by the method of localization.Meanwhile,this equation has been proved to be CRE solvable,and the interaction solutions between solitons and cnoidal waves are given.