位置:成果数据库 > 期刊 > 期刊详情页
基于Mean-Shift的卡尔曼粒子滤波车辆跟踪算法研究
  • ISSN号:1000-386X
  • 期刊名称:计算机应用与软件
  • 时间:2014.9.15
  • 页码:236-239+252
  • 分类:TP391.4[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]南京工业大学自动化与电气工程学院,江苏南京211816, [2]南京工业大学电子与信息工程学院,江苏南京211816
  • 相关基金:国家自然科学基金项目(51106070).
  • 相关项目:双阵列电容传感器气固两相流多参数在线测量方法研究
中文摘要:

在视频车辆跟踪算法中针对传统粒子滤波的非线性、非高斯性可能导致跟踪过程的不准确性,提出一种基于Mean-Shift的卡尔曼(Kalman)粒子滤波算法。该算法利用建立基于目标颜色直方图特征模型对视频车辆目标进行建模,并将其与Kalman滤波相结合进行更新;通过采用Mean Shift算法将Kalman滤波器引用到粒子滤波器当中,通过预测迭代,从而达到对车辆的运行轨迹的修正。将先验信息预测与粒子滤波相结合在保持跟踪系统整体上的非线性、非高斯性,兼顾了卡尔曼滤波局部的线性高斯特性。实验结果表明,该方法与传统粒子滤波方法相比,具有较好的实时性和较高的准确率,能够准确稳定地对目标车辆进行跟踪。

英文摘要:

In video vehicle tracking algorithm, the nonlinear, non-Gaussian property in traditional particle filter may lead to inaccuracy in tracking process. This paper puts forward a mean-shift-based Kalman particle filter algorithm to solve this problem. The algorithm models the video vehicle target by making use of building the target eolour-based histogram feature model, and combines it with the Kalman filter for updating ; it also applies the Kalman filter to particle filter by using mean-shift algorithm, and achieves the correction of vehicle's moving track through prediction iteration. The method combines the priori information and the particle fihering on the overall nonlinear and non-Gaussian properties of the tracking system, and takes into account the local linear Gaussian feature of Kalman filter as well. Experimental result shows that this method has better real-time property and higher accuracy rate than the traditional particle filter methods, and is able to track the target vehicles accurately and stably.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机应用与软件》
  • 北大核心期刊(2011版)
  • 主管单位:上海科学院
  • 主办单位:上海市计算技术研究所 上海计算机软件技术开发中心
  • 主编:朱三元
  • 地址:上海市愚园路546号
  • 邮编:200040
  • 邮箱:cas@sict.stc.sh.cn
  • 电话:021-62254715 62520070-505
  • 国际标准刊号:ISSN:1000-386X
  • 国内统一刊号:ISSN:31-1260/TP
  • 邮发代号:4-379
  • 获奖情况:
  • 全国计算机类中文核心期刊
  • 国内外数据库收录:
  • 波兰哥白尼索引,美国剑桥科学文摘,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2011版),中国北大核心期刊(2000版)
  • 被引量:27463