本文利用水热法制备氧化铜掺杂的碱式碳酸锌,并经过高温得到尺寸均匀的多孔氧化铜掺杂氧化锌纳米材料.用XRD、SEM等测试手段对材料的结构和形貌进行表征,并研究了掺杂前后多孔纳米材料对硫化氢的气敏性能.结果表明,氧化铜掺杂可以提升材料对硫化氢气体响应的灵敏度、选择性和稳定性,材料对H2S的最佳响应温度降低至180℃,对10mg/L硫化氢的灵敏度可以达到60,对其他气体响应相对较弱,说明材料具有非常好的选择性.该氧化铜掺杂多孔氧化锌可适用于硫化氢气敏传感器.
CuO doped zinc carbonate was fabricated by hydrothermal method with zinc nitrate and urea, acetic acid copper and polyvinylpyrrolidone (PVP) as raw material. And the porous zinc oxide was obtained after calcinating. XRD, SEM were used to characterize the structure and morphology of samples. And the effects of CuO-doping on the properties of sulfide hydrogen sensitivity were studied. The results showed that CuO-doped porous zinc oxide for hydrogen sulfide had the better sensitivity, selectivity and stability. It turned out that the device showed the best response at 180 ℃ and the sensitivity could reach 60 to 10 mg/L hydrogen sulfide. It had almost no response to other gases. The porous structure of copper doped zinc oxide could be used in the preparation of sulfide hydrogen sensor.