在综合分析多种泥石流研究方法的基础上,提出分别基于支持向量机和改进的BP神经网络模型的黏性泥石流平均流速预测方法,建立了相应的泥石流平均流速预测模型。以蒋家沟泥石流实时监测数据作为学习样本和测试样本,比较了两种模型的预测精度和适用范围。研究结果表明,泥石流样本训练阶段,支持向量机和BP神经网络均具有较高的模拟精度,BP神经网络较优于支持向量机模型,而在样本预测阶段,支持向量机的预测精度明显优于BP网络,表明支持向量机预测模型有较强的外推能力和预测计算的有效性,可以较好地描述泥石流复杂的非线性关系,为泥石流防治提供精确的科学依据。
在综合分析多种泥石流研究方法的基础上,提出分别基于支持向量机和改进的BP神经网络模型的黏性泥石流平均流速预测方法,建立了相应的泥石流平均流速预测模型。以蒋家沟泥石流实时监测数据作为学习样本和测试样本,比较了两种模型的预测精度和适用范围。研究结果表明,泥石流样本训练阶段,支持向量机和BP神经网络均具有较高的模拟精度,BP神经网络较优于支持向量机模型,而在样本预测阶段,支持向量机的预测精度明显优于BP网络,表明支持向量机预测模型有较强的外推能力和预测计算的有效性,可以较好地描述泥石流复杂的非线性关系,为泥石流防治提供精确的科学依据。