位置:成果数据库 > 期刊 > 期刊详情页
基于动态神经网络支持向量机的FPGA实现
  • ISSN号:1006-2467
  • 期刊名称:《上海交通大学学报》
  • 时间:0
  • 分类:TP183[自动化与计算机技术—控制科学与工程;自动化与计算机技术—控制理论与控制工程]
  • 作者机构:[1]西安理工大学自动化与信息工程学院,西安710048
  • 相关基金:国家自然科学基金(60675048); 陕西省自然科学基金(2007F30)资助项目
中文摘要:

研究了一种基于动态神经网络支持向量机(SVM)的FPGA硬件实现方法.提出了基于动态神经网络的最小二乘支持向量机(LS-SVM)神经网络结构,完成了VHDL语言描述的基于动态神经网络的LS-SVM结构设计,并在XILINX SPANT3E系列FPGA中完成了LS-SVM的分类与回归实验.结果表明,该硬件实现方法很好地完成了SVM的分类与回归功能,与现有的软件仿真和模拟器件实现相比,该方法具有更快的收敛速度和更高的灵活性.

英文摘要:

A new FPGA hardware implementation approach of dynamic neural network for support vector machines was provided and researched.The structure of dynamic neural network for least square support vector machines(LS-SVM) was proposed.The architecture design of dynamic neural network for LS-SVM based on VHDL language was also performed.The experiments of classification and regression for LS-SVM were achieved on XILINX SPANT3E series FPGA.The experimental results show that it is effective to complete the LS-SVM classification and regression based on presented method.Compared with the(existing) methods based on software implementation or analog device implementation,this approach has(better) convergence rate and better flexibility.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《上海交通大学学报》
  • 中国科技核心期刊
  • 主管单位:中华人民共和国教育部
  • 主办单位:上海交通大学
  • 主编:郑杭
  • 地址:上海市华山路1954号15F
  • 邮编:200030
  • 邮箱:shjt@chinajournal.net.cn
  • 电话:021-62933373 62932534
  • 国际标准刊号:ISSN:1006-2467
  • 国内统一刊号:ISSN:31-1466/U
  • 邮发代号:4-256
  • 获奖情况:
  • 1996年全国优秀科技期刊奖,1992年、1996年、1999年国家教育部系统优秀科技期刊奖,2002年“百种重点期刊奖”,2003年百种中国杰出学术期刊,2004年教育部全国高校优秀科技期刊一等奖,2004年“百种重点期刊奖”
  • 国内外数据库收录:
  • 美国化学文摘(网络版),美国数学评论(网络版),德国数学文摘,荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:30903