位置:成果数据库 > 期刊 > 期刊详情页
积雪混合像元光谱特征观测及解混方法比较
  • ISSN号:1000-0593
  • 期刊名称:光谱学与光谱分析
  • 时间:2012.10.10
  • 页码:2753-2758
  • 分类:TP751.1[自动化与计算机技术—控制科学与工程;自动化与计算机技术—检测技术与自动化装置]
  • 作者机构:[1]中国科学院寒区旱区环境与工程研究所,甘肃兰州730000, [2]草地农业生态系统国家重点实验室,兰州大学草地农业科技学院,甘肃兰州730020, [3]中国气象局沙漠气象研究所,新疆乌鲁木齐830002, [4]中国科学院研究生院,北京100049
  • 相关基金:国家(973计划)重点基础研究发展项目(2010CB951403);国家自然科学基金项目(41001197,41101337,41071227,41101345);西部博士项目(29Y128861)资助;感谢COSS1试验的其他成员张璞,车涛,梁继,李红星,毕健,林金堂,李晖的大力支持和帮助.
  • 相关项目:遥感信息提取青藏高原地区季节雪线高度研究
中文摘要:

积雪混合像元分解方法研究及积雪比例产品的发展是积雪遥感的重要研究方向。在我国北疆地区利用SVC HR-1024野外便携式光谱仪观测了已知积雪比例的混合像元光谱特征并进行系统分析,同时,采用四种混合像元分解模型对实测光谱进行解混及精度评价。结果表明反射率随积雪比例均匀下降并不呈均匀的线性变化,在不同波段呈非线性变化特征,积雪像元解混精度与观测尺度的不同有一定的联系,尺度越小,解混精度越低;进一步对实测光谱的解混结果表明,线性回归法精度较低,特别是对于积雪比例小于50%的解混结果不准确,稀疏回归解混法和非负矩阵解混法略高于线性混合像元分解法,但线性混合像元分解法运算效率最高,稀疏回归解混法运算效率最低,当对遥感图像进行解混时,要综合考虑四种方法的计算效率。通过将推动积雪混合像元分解定量遥感研究,并为遥感影像准确提取积雪比例提供理论依据。

英文摘要:

The unmixing algorithms of mixed snow pixels and the fractional snow cover products are an important research direction for snow remote sensing. In the present study, we first designed the mixed snow pixels of different snow fraction/proportion in Northern Xinjiang, China as ground truth. Then, a SVC HR-1024 ground-based spectral radiometer was used for measuring the spectral property of this designed pixel for different snow fractions and different underlying surfaces. Finally, using the measured spectral data, the four mixed-pixel decomposition models were validated and evaluated for their performance in terms of accuracy and computational efficiency. The results showed that the reflectivity does not decline linearly with the reduction of snow ratio in the pixel, and that the unmixing accuracy inversely depends on the scales of the observation. Further, the comparison of the above mentioned unmixing algotihms showed that the linear regression method has the worst accuracy, especially when the snow proportion is less than 50% ; the accuracy of sparse regression algorithm and non-negative matrix factorization were slightly higher than the full constrained linear mixed-pixel decomposition; however, full constrained linear mixed-pixel decomposition method had higher computational efficiency than the other two methods; the sparse regression algorithm has lowest computational efficiency. With unmixing remote sensing images, due to the large data volumes, we must consider the algorithms' computational efficiency. This study would promote quantitative researches on snow mixed pixel decomposition, and provide a theoretical basis for accurately extracting the snow coverage of interest area using remote sensing images.

同期刊论文项目
期刊论文 24 会议论文 3
同项目期刊论文
期刊信息
  • 《光谱学与光谱分析》
  • 中国科技核心期刊
  • 主管单位:中国科学技术协会
  • 主办单位:中国光学学会
  • 主编:高松
  • 地址:北京海淀区魏公村学院南路76号
  • 邮编:100081
  • 邮箱:chngpxygpfx@vip.sina.com
  • 电话:010-62181070
  • 国际标准刊号:ISSN:1000-0593
  • 国内统一刊号:ISSN:11-2200/O4
  • 邮发代号:82-68
  • 获奖情况:
  • 1992年北京出版局编辑质量奖,1996年中国科协优秀科技期刊奖,1997-2000获中国科协择优支持基础性高科技学术期刊奖
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国化学文摘(网络版),荷兰文摘与引文数据库,美国工程索引,美国生物医学检索系统,美国科学引文索引(扩展库),英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),英国英国皇家化学学会文摘,中国北大核心期刊(2000版)
  • 被引量:40642