浅水波浪和大量长波浪现象被非线性的进化方程的各种各样的模型通常调查。例子包括 Korteweg de Vries, Camassa 河边肥沃的低地,并且 Whitham Broer Kaup (WBK ) 方程。这一个概括 WBK 系统经由多线性的可变分离途径被学习。有不连续的衍生物(“山峰 ons ”) 的波浪侧面的一个特殊的班被开发。各种各样的特征的 Peakons,例如周期,搏动或分数维,被调查,如此的实体的相互作用被学习。
Shallow water waves and a host of long wave phenomena are commonly investigated by various models of nonlinear evolution equations. Examples include the Korteweg-de Vries, the Camassa-Holm, and the Whitham-Broer-Kaup (WBK) equations. Here a generalized WBK system is studied via the multi-linear variable separation approach. A special class of wave profiles with discontinuous derivatives ("peakons") is developed. Peakons of various features, e.g. periodic, pulsating or fractal, are investigated and interactions of such entities are studied.