轨迹数据作为泛在地理信息环境中社会遥感数据的主要表现形式之一,为从个体的视角研究群体的空间移动规律,提供了新的数据支撑和研究思路。特别是在当前的大数据背景下,通过轨迹数据发掘人类的移动规律和活动模式,进而探求蕴含的深层次知识,是解决城市问题的重要途径,轨迹数据挖掘也由此成为地理信息科学及相关学科的研究热点。本文首先阐述了人类移动规律研究常用的轨迹数据集及在该数据集上开展的相关研究和典型应用;然后从城市空间结构功能单元的识别及城市韵律分析、人类活动模式的发现与空间移动行为预测、智能交通的时间估算与异常探测、城市计算的其他4个方面,综述了轨迹数据挖掘在城市中的应用;最后,指出了轨迹数据挖掘面临的挑战和进一步的发展方向。
The trajectory datasets record a series of position information at different times, so they become the new data sources to study the laws of human mobility. As a main form of social remote sensing data, trajectory datasets also bring a new individual viewpoint to study geographical phenomena. With the emergence of big data, trajectory data mining becomes a hot topic in geographical information science, urban computing and other correlative disciplines. In this paper, we gave a brief review on trajectory data mining and its applications in cities. First, we listed the data sets frequently adopted by human mobility research, gave the classification and their typical applications using FCD data, mobile phone data, smart cards data, check-in data, etc. Then, we summarized its application in solving cities' problems from four aspects: (1) the identification of urban spatial structure and function unit; (2) the patterns recognition of human activity and the behavior prediction of human movement; (3) the traffic time estimation and the anomaly detection of intelligent transportation; (4) other applications in urban computing such as in urban air and noise pollution, disaster prevention and rescue, even in intelligent tourism and information recommendation. At the end, we pointed out the challenges and further research directions of trajectory data mining.