位置:成果数据库 > 期刊 > 期刊详情页
基于LDA主题特征的自动文摘方法
  • ISSN号:1000-386X
  • 期刊名称:《计算机应用与软件》
  • 时间:0
  • 分类:TP301[自动化与计算机技术—计算机系统结构;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]苏州大学计算机科学与技术学院,江苏苏州215006, [2]江苏省计算机信息处理技术重点实验室,江苏苏州215006
  • 相关基金:国家自然科学基金(60673041 60873150); 江苏省高校自然科学重大基础研究项目(08KJA520002)
中文摘要:

近年来概率主题模型受到了研究者的广泛关注,LDA(Latent Dirichlet Allocation)模型是主题模型中具有代表性的概率生成模型之一,它能够检测文本的隐含主题。提出一个基于LDA模型的主题特征,该特征计算文档的主题分布与句子主题分布的距离。结合传统多文档自动文摘中的常用特征,计算句子权重,最终根据句子的分值抽取句子形成摘要。实验结果证明,加入LDA模型的主题特征后,自动文摘的性能得到了显著的提高。

英文摘要:

Probabilistic topic models have received considerable attentions in recent years.LDA model,as a topic model,is one representative among probabilistic generative models,which is used to detect latent topics from documents.In this paper,an LDA-model-based topic feature is proposed.The feature is applied to calculating the distance between distributed document topics and distributed sentence topics.By combining common features in conventional multi-document automatic summarizations,sentences are ranked,and the summary is formed by extracting sentences ordered by their weights.Experiment results show that the automatic summarization performance is significantly improved by the integration of LDA model topic feature.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机应用与软件》
  • 北大核心期刊(2011版)
  • 主管单位:上海科学院
  • 主办单位:上海市计算技术研究所 上海计算机软件技术开发中心
  • 主编:朱三元
  • 地址:上海市愚园路546号
  • 邮编:200040
  • 邮箱:cas@sict.stc.sh.cn
  • 电话:021-62254715 62520070-505
  • 国际标准刊号:ISSN:1000-386X
  • 国内统一刊号:ISSN:31-1260/TP
  • 邮发代号:4-379
  • 获奖情况:
  • 全国计算机类中文核心期刊
  • 国内外数据库收录:
  • 波兰哥白尼索引,美国剑桥科学文摘,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2011版),中国北大核心期刊(2000版)
  • 被引量:27463