使用355 nm YAG皮秒脉冲激光对250 nm厚的非晶硅薄膜进行激光晶化的研究,并利用金相显微镜、拉曼光谱和X射线能谱(EDS:energy dispersive spectrometer)等对晶化样品进行了分析。结果表明:随着激光脉冲能量的增加,完全熔区和部分熔区的宽度均明显增大。在所研究的脉冲能量范围内(15μJ—860μJ),所有样品的完全熔区的拉曼光谱均无非晶硅或晶体硅的特征峰,而位于完全熔区边缘的部分熔区的拉曼光谱却显示出晶体硅的特征峰,这可能是因为完全熔区接受到的激光能流密度过大,造成区内绝大部分非晶硅薄膜气化蒸发。这个推测进一步得到了X射线能谱分析结果的证实。X射线能谱分析结果表明,完全熔区的成份主要是玻璃与硅反应生成的硅化物,其表面被二氧化硅层所覆盖。
Abstract: 250 nm amorphous silicon thin films were crystallized by a 355 nm YAG picosecond pulsed laser, then the crystallized samples were investigated by metallurgical microscope, Raman spectrometer and X-ray spectrometer. The results show that with increasing laser energy the width of completely molten zone and partially molten zone increases remarkably. In the energy range from 15 μJ to 860 μJ, neither characteristic peak of amorphous silicon nor characteristic peak of crystalline silicon appears in Raman spectra of the completely molten zones in all samples, while Raman spectra of the partially molten zone exhibit the sharp characteristic peak of crystalline silicon, it might be because that the energy flux density received by completely molten zone was so big that the most of the amorphous silicon in this region was evaporated. This assumption was further reconfirmed by EDS (energy dispersive spectrometer) analysis results, which shows that the composition of the completely molten zone are mainly silicide produced by reaction between glass and silicon, and its surface are covered by silicon dioxide layer.