位置:成果数据库 > 期刊 > 期刊详情页
基于模糊聚类的多分辨率社区发现方法
  • ISSN号:1009-5896
  • 期刊名称:《电子与信息学报》
  • 时间:0
  • 分类:TP393[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术] TP391[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:上海交通大学电子信息与电气工程学院,上海200240
  • 相关基金:国家973关键技术研究项目(2013CB329603),国家自然科学基金(61472248,61431008)
中文摘要:

针对网络结构的复杂性和群体划分的不确定性,该文提出一种基于模糊聚类的多分辨率社区结构发现方法。该方法用模糊方法来处理网络节点间的相似性,以实现社区结构的模糊划分。基于节点间的局部交互信息,考虑节点间的模糊关系和网络拓扑结构相似性传递,实现网络社区的层次聚类。并通过调节模糊参数,挖掘出不同分辨率下的社区结构。同时为了避免主观地确定社区数目,引入一种新的模块度以度量社区划分结果。实验证明该方法能够有效且稳定地揭示潜在的社区结构。

英文摘要:

Focusing on the complexity of network structure and the indeterminacy of community partition, this paper puts forward a novel fuzzy clustering method for uncovering community structures. In contrast to previous studies, the proposed method disposes the similarity of connecting vertices with fuzzy relation. Based on local interactive information, it considers the fuzzy relation between vertices and the transitive similarity in network topology to divide vertices into communities. In addition, multiresolution communities can be detected by adjusting fuzzy parameter. In order to avoid subjectivity in the selection of cluster number, a new modularity is introduced to evaluate the effectiveness of the clustering analysis. It is proved by experiments that the method is efficient and stable to detect underlying communities.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《电子与信息学报》
  • 中国科技核心期刊
  • 主管单位:中国科学院
  • 主办单位:中国科学院电子学研究所 国家自然科学基金委员会信息科学部
  • 主编:朱敏慧
  • 地址:北京市北四环西路19号
  • 邮编:100190
  • 邮箱:jeit@mail.ie.ac.cn
  • 电话:010-58887066
  • 国际标准刊号:ISSN:1009-5896
  • 国内统一刊号:ISSN:11-4494/TN
  • 邮发代号:2-179
  • 获奖情况:
  • 国内外数据库收录:
  • 荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版)
  • 被引量:24739