铁磁半导体是构筑自旋电子学器件的材料基础,而过渡金属氧化物由于未满d壳层电子轨道的存在,其中常存在较强的轨道、自旋、电荷、晶格间的关联作用,从而表现出丰富的物理内涵,被认为是开发具有多维度调控电子自旋功能的新型铁磁半导体最有竞争力的材料。实验研究表明Mn3-x-yCoxNiyO4系列过渡金属氧化物(MCNO)具有明显半导体特性的同时具有较高的亚铁磁温度(200K),且存在传导电子与磁序的明显关联作用。本课题在前期研究成果基础上深入研究MCNO的磁序结构,明确铁磁磁矩形成机理,深入研究电子能带结构,光学吸收结构,载流子输运特性,通过组份调节阳离子间距、调控离子分布状态、载流子浓度、Hubbard带隙等物理量来加强铁磁耦合作用提高材料的铁磁居里温度以及提高传导电子的自旋极化率。基于优化后的MCNO材料研制具有明显隧穿磁阻效应的磁隧穿结,推进MCNO系列材料在自旋电子学中的应用。
英文主题词ferromagnetic semiconductor;transition metal oxides;spintronics;Magnetic tunnel junction;