位置:立项数据库 > 立项详情页
与带位势算子相关的几个问题
  • 项目名称:与带位势算子相关的几个问题
  • 项目类别:面上项目
  • 批准号:10971002
  • 申请代码:A010504
  • 项目来源:国家自然科学基金
  • 研究期限:2010-01-01-2012-12-31
  • 项目负责人:唐林
  • 负责人职称:副教授
  • 依托单位:北京大学
  • 批准年度:2009
中文摘要:

研究带某类位势算子的有界性问题是最近十几年来国际上非常活跃的领域,其中最典型的例子就是带非负位势的薛定谔算子。本课题就是要进一步研究带某类位势算子的一些性质。主要包括以下几个方面。首先, 我们将研究带某类非负位势薛定谔算子在非双倍权空间上的有界性问题。 其次,我们将研究带某类非负位势的散度微分算子的有界性问题。另外,我们将研究带某类非负位势的热传导方程在有界区域Lipschitz边界上Dirichlet和Neumann边值问题。同时,带非连续系数的非散度椭圆和抛物型预解方程的加权正则性问题也将被研究。最后,我们将研究在幂零李群上某类非负位势的散度椭圆和抛物型微分算子的有界性问题。

结论摘要:

本课题研究带某类位势算子的一些性质。主要包括以下几个方面。首先, 我们得到了一类带某类非负位势薛定谔算子在非双倍权空间上的有界性问题。 其次,我们研究了带某类非负位势的抛物型薛定谔算子算子的有界性问题。另外,我们研究了带某类非负位势的热传导方程在有界区域Lipschitz边界上Dirichlet和Neumann边值问题。同时,带非连续系数的非散度抛物型预解方程的加权正则性问题也被研究。最后,我们得到了拟微分算子的加权有界性问题以及加权Hardy 空间理论。


成果综合统计
成果类型
数量
  • 期刊论文
  • 会议论文
  • 专利
  • 获奖
  • 著作
  • 10
  • 0
  • 0
  • 0
  • 0
相关项目
期刊论文 38 会议论文 1 著作 1
唐林的项目