本项目研究随机系数和带跳的线性随机微分系统的H2/H∞控制,主要内容为1、研究扩散项依赖于干扰且系统参数为随机过程的H2/H∞控制。界实引理反映系统的鲁棒性能与未定Riccati方程的可解性之间的等价关系,它的解决使得H2/H∞控制问题迎刃而解。在获得随机系数界实引理的基础上,我们得到H2/H∞控制问题的解可由耦合的倒向随机Riccati方程的解线性状态反馈表示;2、作为随机系数界实引理的特殊情形,研究扩散项依赖于干扰、系统参数含Brown运动的界实引理;3、研究含Markov跳变参数的由Brown运动和Poisson点过程驱动的跳扩散系统的界实引理,在此基础上,探讨H2/H∞控制问题。本项目的研究内容直接来源于鲁棒控制和随机控制中富有挑战性的热点问题,具有重要的理论和实际意义。
英文主题词H2/H∞ control;Markov jumping parameters;Poisson jump-diffusion system;Bounded real lemma;Dynamic programing