多工况水力设计已成为离心泵研究的热点之一。本项目拟对离心泵多工况水力设计中的关键科学问题展开研究,以提高其多个工况的运行效率。本项目拟采用三维PIV技术研究离心泵全工况下的内部流动特征,采用小波神经网络提出三维PIV粒子图像去噪方法,并结合互相关算法和快速傅里叶变换算法研究粒子图像的精确处理算法。在分析叶轮出口处滑移速度和液流角偏移量的基础上,探索离心泵全工况滑移系数计算模型。基于泵内能量损失的全工况测量建立离心泵多工况性能计算模型。结合EIMS和GASA算法发展求解离心泵多工况性能计算模型的GASA-EIMS算法,研究环境识别因子对求解精度和收敛速度的影响。基于上述研究,提出一种离心泵多工况水力设计方法,并通过试验验证。本项目旨在建立具有环境识别记忆的离心泵多工况水力设计方法。研究成果对促进我国节能减排目标的实现具有重要意义,同时也为其它叶片式流体机械的多工况水力设计提供借鉴。
英文主题词centrifugal pump;multi-conditions design;image preprocessing;slip factor;GASA-EIMS algorithm