驾驶行为研究是世界智能汽车和智能交通领域的热点,缺乏真实的事故数据是严重制约我国深入研究的瓶颈之一。本研究的目的是基于真实的事故数据构建我国驾驶人应急行为数据库,并深入挖掘应急驾驶行为与道路弱势群体(行人、骑两轮车者)损伤风险的关系。数据来源于长沙市深度交通事故调查研究,通过问卷调查、事故重建和虚拟驾驶试验等方法采集驾驶人的真实应急避险行为数据;对感知、决策、操控等应急行为环节以及车辆运动参数、道路环境指标等进行精细化描述,提取应急行为特征值,构建我国乘用车驾驶人应急行为表征数据库。基于深入的事故形态研究和贝叶斯信念网络方法深入挖掘应急驾驶行为特征与弱势群体损伤风险的定性关系;基于Logistic回归方法探索应急驾驶行为特征与弱势群体损伤风险的定量关系;基于网络层次分析法(ANP)构建驾驶人应急行为风险评估模型。为我国车辆主动安全、人机工程以及智能交通技术的发展提供基础数据和科学依据。
英文主题词driver urgent behavior;data mining;Bicycle Accident;;Electric two-wheeler accident;;BNT model;