线性模型是数据分析中应用广泛的一类参数模型。由于实际应用中回归模型经常存在测量误差和一些约束条件,因此研究具有测量误差数据的约束线性模型更具实际意义。本项目主要研究带测量误差数据下约束线性模型的参数估计和变量选择理论与方法。第一,研究模型在等式约束下的参数有偏估计,当约束条件值得怀疑的时候,研究未知参数基于Wald检验、似然比(LR)检验和拉格朗日(LM)检验等大样本检验的预检验估计,并研究估计的相合性和渐近正态性;第二,研究如何利用Boosting方法来实现估计的变量选择,并且重点研究约束有偏估计中偏参数的选取问题。通过本项目的工作,不仅能丰富线性模型的理论,且能促进线性模型在计量经济和医学等领域的广泛应用。
英文主题词Linear model;Measurement error;Biased estimator;Linear constraint;