函数f:V(G)→{-1,1}称为图G的符号全控制函数,如果对每一个开邻域集上的点的函数值的和都大于等于1.符号全控制函数的权值是指图中所有点的函数值的求和.图的符号全控制数为图中所有符号全控制函数的最小权值.令G^-表示图G的补图,在该文中,我们研究符号全控制数的Nordhaus—Gaddum型不等式,给出了路与其补图的符号全控制数和的上界,以及图与其补图的符号全控制数和的下界.
A function f : V(G)→{-1,1} defined on the vertices of a graph G is a signed total dominating function (STDF) if the sum of its function values over any open neighborhood is at least one. The weight of a STDF is the sum of its function values over all vertices. Thesigned total domination number of G is the minimum weight of a STDF on G. Let G^- denote the complement of a graph G. In this paper we study Nordhaus-Gaddum type results for signed total domination number. An upper bound on γt^s(Pn)+γt^s(P^-n) for a path Pn and a lower bound on γt^s(G)+γt^s(G^-) are presented.