为 reals 的一个任意的子集,功能 f:V 鈫?被定义是图 G = 的一个统治函数(V, E ) 如果它在任何关上的邻居上的函数值的和是至少 1。也就是说为每蠀?V, f (N [蠀]) 鈮 ? 1。统治功能的总数的定义被简单地改变鈥榗l osed 鈥 ? 邻居 N 获得[在在鈥 ? 邻居 N 统治功能到鈥榦p 的定义的蠀]( 蠀) 。(总数) 图 G 的支配数字被定义是在统治功能 f 的所有(总数) 上拿的重量 w (f)= 的 infimum。同样,统治功能的边和星能被定义。在这份报纸,我们在在图理论统治功能的话题上调查某最近的进步。特别,我们对感兴趣,与整数价值统治图的功能的边和星。
For an arbitrary subset P of the reals, a function f : V →P is defined to be a P-dominating function of a graph G = (V, E) if the sum of its function values over any closed neighbourhood is at least 1. That is, for every v ∈ V, f(N[v]) ≥ 1. The definition of total P-dominating function is obtained by simply changing ‘closed' neighborhood N[v] in the definition of P-dominating function to ‘open' neighborhood N(v). The (total) P-domination number of a graph G is defined to be the infimum of weight w(f) = ∑v ∈ V f(v) taken over all (total) P-dominating function f. Similarly, the P-edge and P-star dominating functions can be defined. In this paper we survey some recent progress on the topic of dominating functions in graph theory. Especially, we are interested in P-, P-edge and P-star dominating functions of graphs with integer values.