位置:成果数据库 > 期刊 > 期刊详情页
基于鱼群算法的独立成分分析算法研究
  • ISSN号:1002-8331
  • 期刊名称:计算机工程与应用
  • 时间:2013
  • 页码:187-190
  • 分类:TN911.72[电子电信—通信与信息系统;电子电信—信息与通信工程]
  • 作者机构:[1]中国地质大学数理学院,武汉430074
  • 相关基金:国家自然科学基金(No.11026145,No.61102103,No.61071188);湖北省自然科学基金(No.2010CDB04205,No.2009CDB077);中央高校基本科研业务费专项资金(No.CUGL090252,No.CUG090112,No.CCNU10A01013).
  • 相关项目:复杂噪声中二维谐波信号参数估计方法及其统计性能分析研究
中文摘要:

独立成分分析(ICA)只需要知道源信号较少的先验知识(如统计独立性等),仅由观测信号便能恢复出源信号的特性,因而得到了广泛应用。ICA的目的是寻找变换矩阵,使输出信号经变换后各成分之间尽可能的统计独立,其关键是建立一个目标函数,使得最大化(或最小化)目标函数的解便是所要找的变换矩阵。首次将人工鱼群算法(AFSA)与ICA相结合,提出了基于AFSA的独立成分分析算法。以负熵极大化作为目标函数,通过人工鱼的觅食,聚群和追尾行为,更新人工鱼的位置,得到全局最优解,从而得到分离矩阵。与自然梯度法相比,鱼群算法精度更高,收敛速度更快,仿真实验表明了将鱼群算法应用于独立成分分析的可行性和有效性。

英文摘要:

Independent Component Analysis (ICA) which requires a little prior knowledge (such as independent) of signals is widely applied. The goal of ICA is to find a separation matrix so that each component of the output signal by transforming is independent. The key of ICA is to construct a target function, and then obtain the separation matrix by maximize(or minimize) the target function. This paper proposes an ICA algorithm based on Artificial Fish Swarm Algorithm (AFSA). With the target function of maximum negentropy, it can obtain the separation matrix through foraging, cluster and tracing behavior of artificial fishes and updating artificial fish position. Compare with natural gradient, AFSA has the high accuracy and fast convergence rate. Experimental results are provided to evaluate the performance of the proposed algorithm.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机工程与应用》
  • 北大核心期刊(2014版)
  • 主管单位:中国电子科技集团公司
  • 主办单位:华北计算技术研究所
  • 主编:怀进鹏
  • 地址:北京市海淀区北四环中路211号北京619信箱26分箱
  • 邮编:100083
  • 邮箱:ceaj@vip.163.com
  • 电话:
  • 国际标准刊号:ISSN:1002-8331
  • 国内统一刊号:ISSN:11-2127/TP
  • 邮发代号:82-605
  • 获奖情况:
  • 1. 2012年首批获得中国学术文献评价中心发布的 “...,2. 2001年获得新闻出版署“中国期刊方阵双效期刊”,3. 2008年首批入选国家科技部“中国精品科技期刊...,4.2003年-2011年连续获得工业和信息化部期刊最高...
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,波兰哥白尼索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:97887