设G是有限维复单李代数,A=C[t^±1],GA:=G×cA是loop代数.设a是非零复数.M是有限维不可约G-模.则M^at=M是不可约GA-模,其中x×(t)在M^a上的作用为x×f(t)·v=f(a)xv.首先证明,若李代数L的有限维模都完全可约.那么L的有限维模的导子都是内导子.接着利用有限维复单李代数的有限维模都完全可约这一性质.计算GA-模M^a的导子.证明了当且仅当M是G的伴随模时,M^a存在外导子,这也说明了loop代数的有限维模不是完全可约的.
Let G be a simple Lie algebra over the complex field C ,A=C[t^±1]and GA:=G×cA be the loop algebra. For any nonzero complex number a and any finite dimensional irreducible G-module M, Ma 1=M is an irreducible GA-module. Where, the the action of x×f(t) on Ma is defined by sending m to f(a)xm. In this paper, the author firstly proved that if any finite dimensional modules of Lie algebra L is completely reducible, then the derivations of such modules are all inner derivations. Using the fact that any finite dimensional modules of a complex simple Lie algebra is completely reducible, he computed the derivations of GA-module M^a ,and proved that there exists outer derivations of M^a if and only if M is Gs adjoint module.