位置:成果数据库 > 期刊 > 期刊详情页
基于兴趣区域特征融合的半监督图像检索算法
  • ISSN号:1672-3961
  • 期刊名称:《山东大学学报:工学版》
  • 时间:0
  • 分类:TP391[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]山东师范大学信息科学与工程学院,山东济南250014, [2]山东省分布式计算机软件新技术重点实验室,山东济南250014
  • 相关基金:国家自然科学基金资助项目(61170145,61373081);教育部博士点基金资助项目(20113704110001);山东省自然科学基金资助项目(ZR2010FM021);山东省科技攻关计划资助项目
中文摘要:

提出一种融合底层特征、基于兴趣区域的半监督学习图像检索方法,实现了图像内容的语义关联。该方法首先划分图像兴趣区域,提取图像的综合底层特征,然后将其作为训练数据,对图像类别进行半监督学习,建立图像和类别的语义映射,最后分别采用二次式距离和改进的 Canberra 距离对图像底层特征进行度量,特征空间中图像类的区域中心用正反馈进行迭代更新。通过实验对比,该图像检索算法具有较高的准确率,优于传统的基于内容的图像检索算法。

英文摘要:

A method of image retrieval based on the feature fusion of region of interest was proposed to realize the semantic correlation of images content.First, the regions of interest were divided and the integrated underlying characteristics of image were extracted.Second, the characteristics were used as training data to classify the images by semi-supervised learning, then the mapping between images and categories of semantic was established.Finally, the quadratic distance and the improved Canberra distance were respectively used for measuring low-level features, and the cluster centers of images in the feature space were updated iteratively through positive feedback.The experiments compared with other algorithms showed that the proposed image retrieval algorithm had higher accuracy and performed more effectively than traditional algorithms.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《山东大学学报:工学版》
  • 北大核心期刊(2011版)
  • 主管单位:教育部
  • 主办单位:山东大学
  • 主编:李术才
  • 地址:山东济南市经十路17923号
  • 邮编:250061
  • 邮箱:xbgxb@sdu.edu.cn
  • 电话:0531-88396452
  • 国际标准刊号:ISSN:1672-3961
  • 国内统一刊号:ISSN:37-1391/T
  • 邮发代号:24-221
  • 获奖情况:
  • 国内外数据库收录:
  • 美国化学文摘(网络版),波兰哥白尼索引,美国剑桥科学文摘,中国中国科技核心期刊,中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版)
  • 被引量:6258