位置:成果数据库 > 期刊 > 期刊详情页
基于标记特征的多标记学习改进算法
  • ISSN号:1002-8331
  • 期刊名称:计算机工程与应用
  • 时间:2013
  • 页码:163-166
  • 分类:TP391[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]山东师范大学信息科学与工程学院,济南250014, [2]山东省分布式计算机软件新技术重点实验室,济南250014
  • 相关基金:国家自然科学基金(No.61170145);教育部高等学校博士点专项基金(No.20113704110001);山东省自然科学基金和科技攻关计划项目(No.ZR2010FM021,No.200880026,No.2010G0020115);山东省分布式新技术重点实验室的资助.
  • 相关项目:基于特征建模优化与判别学习的Web spam识别技术研究
中文摘要:

基于标记特征的多标记分类算法通过对标记的正反样例集合进行聚类,计算样例与聚类中心间的距离构造样例针对标记的特征子集,并生成新的训练集,在新的训练集上利用传统的二分类器进行分类。算法在构造特征子集的过程中采用等权重方式,忽略了样例之间的相关性。提出了一种改进的多标记分类算法,通过加权方式使生成的特征子集更加准确,有助于提高样例的分类精度。实验表明改进的算法性能优于其他常用的多标记分类算法。

英文摘要:

Multi-label learning with label specific features conducts clustering analysis on the label' s positive and negative in- stances, and then features being specific to labels are constructed by computing the distance between the instance and the cluster- ing centers.New training sets are generated based on the label-specific features and the classification model is induced by the tra- ditional binary learner.But the feature sets are generated by using the method of equal weight for each instance, it ignores the rel- evance among instances.This paper proposes a modified algorithm to solve the multi-label learning problem. It results in exact feature sets by weighting instances.Experimental results show that the modified algorithm works better than other commonly used multi-label algorithms.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机工程与应用》
  • 北大核心期刊(2014版)
  • 主管单位:中国电子科技集团公司
  • 主办单位:华北计算技术研究所
  • 主编:怀进鹏
  • 地址:北京市海淀区北四环中路211号北京619信箱26分箱
  • 邮编:100083
  • 邮箱:ceaj@vip.163.com
  • 电话:
  • 国际标准刊号:ISSN:1002-8331
  • 国内统一刊号:ISSN:11-2127/TP
  • 邮发代号:82-605
  • 获奖情况:
  • 1. 2012年首批获得中国学术文献评价中心发布的 “...,2. 2001年获得新闻出版署“中国期刊方阵双效期刊”,3. 2008年首批入选国家科技部“中国精品科技期刊...,4.2003年-2011年连续获得工业和信息化部期刊最高...
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,波兰哥白尼索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:97887