位置:成果数据库 > 期刊 > 期刊详情页
基于全局距离和类别信息的邻域保持嵌入算法
  • ISSN号:1672-3961
  • 期刊名称:《山东大学学报:工学版》
  • 时间:0
  • 分类:TP391[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]山东师范大学信息科学与工程学院,山东济南250014, [2]山东省分布式计算机软件新技术重点实验室,山东济南250014
  • 相关基金:国家自然科学基金资助项目(61170145,61373081); 教育部博士点基金资助项目(20113704110001); 山东省自然科学基金资助项目(ZR2010FM021); 山东省科技攻关计划资助项目(2013GGX10125)
中文摘要:

提出一种基于全局距离和类别信息的邻域保持嵌入算法。该方法在使用欧氏距离构造邻域图中,加入表征全局距离的全局因子和表示类别信息的函数项,全局因子可以使分布不均匀的样本变得平滑均匀,类别信息可以使同类样本点紧凑异类样本点疏离,通过提高所选邻近点的质量,优化数据的局部邻域,使降维后的数据具有更好的可分性。试验结果表明,该算法具有较高的准确率,优于传统的邻域保持嵌入算法。

英文摘要:

An algorithm of neighborhood preserving embedding based on global distance and label information was proposed. A global factor that characterized the global distance and a function term that characterized the label information were added in the traditional Euclidean distance formula of adjacent graph. Global factor could make unevenly dirtibuted samples smooth and uniform,label information could make intra-class compact and inter-class separable,which improved quality of neighborhood and constructed an optimal adjacency graph,and improved classification accuracy. Experimental results showed that the proposed algorithm had higher accuracy and performed more effective than traditional neighborhood preserving embedding algorithm.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《山东大学学报:工学版》
  • 北大核心期刊(2011版)
  • 主管单位:教育部
  • 主办单位:山东大学
  • 主编:李术才
  • 地址:山东济南市经十路17923号
  • 邮编:250061
  • 邮箱:xbgxb@sdu.edu.cn
  • 电话:0531-88396452
  • 国际标准刊号:ISSN:1672-3961
  • 国内统一刊号:ISSN:37-1391/T
  • 邮发代号:24-221
  • 获奖情况:
  • 国内外数据库收录:
  • 美国化学文摘(网络版),波兰哥白尼索引,美国剑桥科学文摘,中国中国科技核心期刊,中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版)
  • 被引量:6258