位置:成果数据库 > 期刊 > 期刊详情页
融合局部特征的图像过渡区提取与阈值化
  • ISSN号:1001-9081
  • 期刊名称:《计算机应用》
  • 时间:0
  • 分类:TP391.413[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]湛江师范学院信息科学与技术学院,广东湛江524048
  • 相关基金:国家自然科学基金资助项目(60875007);国家973计划项目(2012CB719903).
中文摘要:

针对图像过渡区提取与阈值化问题,提出了一种融合局部灰度复杂度和局部灰度差异度的方法。首先生成图像的局部复杂度和局部差异度等局部灰度特征;其次融合这些局部灰度特征构造新的特征矩阵;然后设计了与特征矩阵的均值和标准差相关的自动特征阈值,并提取图像过渡区;最后将过渡区像素的灰度均值作为最优灰度阈值完成图像二值化。实验结果表明,所提方法的过渡区提取质量高,分割效果好,具有合理性和有效性,可作为经典方法的有效补充。

英文摘要:

To select the optimal threshold for image segmentation, a new method based on local complexity and local difference was proposed. Firstly, the local grayscale features of a given image were generated, including local complexity and local difference. Next, the new feature matrix was constructed using local feature fusion. Then, an automatic threshold was defined based on the mean and standard deviation of feature matrix, and the image transition region was extracted. Finally, the optimal grayscale threshold was obtained by calculating the grayscale mean of transition pixels, and the binary result was yielded. The experimental results show that, the proposed method performs well in transition region extraction and thresholding, and it is reasonable and effective. It can be an alternative to traditional methods.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机应用》
  • 北大核心期刊(2011版)
  • 主管单位:四川省科学技术协会
  • 主办单位:四川省计算机学会中国科学院成都分院
  • 主编:张景中
  • 地址:成都市人民南路四段九号科分院计算所
  • 邮编:610041
  • 邮箱:xzh@joca.cn
  • 电话:028-85224283
  • 国际标准刊号:ISSN:1001-9081
  • 国内统一刊号:ISSN:51-1307/TP
  • 邮发代号:62-110
  • 获奖情况:
  • 全国优秀科技期刊一等奖,国家期刊奖提名奖,中国期刊方阵双奖期刊,中文核心期刊,中国科技核心期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,波兰哥白尼索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:53679